Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2.
نویسندگان
چکیده
Regulation of the process of neuronal death plays a central role both during development of the CNS and in adult brain. The transcription factor myocyte enhancer factor 2 (MEF2) plays a critical role in neuronal survival. Cyclin-dependent kinase 5 (Cdk5) mediates neurotoxic effects by phosphorylating and inhibiting MEF2. How Cdk5-dependent phosphorylation reduces MEF2 transactivation activity remained unknown. Here, we demonstrate a novel mechanism by which Cdk5, in conjunction with caspase, inhibits MEF2. Using primary cerebellar granule neuron as a model, our investigation reveals that neurotoxicity induces destabilization of MEF2s in neurons. Destabilization of MEF2 is caused by an increase in caspase-dependent cleavage of MEF2. This cleavage event requires nuclear activation of Cdk5 activity. Phosphorylation by Cdk5 alone is sufficient to promote degradation of MEF2A and MEF2D by caspase-3. In contrast to MEF2A and MEF2D, MEF2C is not phosphorylated by Cdk5 after glutamate exposure and, therefore, resistant to neurotoxin-induced caspase-dependent degradation. Consistently, blocking Cdk5 or enhancing MEF2 reduced toxin-induced apoptosis. These findings define an important regulatory mechanism that for the first time links prodeath activities of Cdk5 and caspase. The convergence of Cdk5 phosphorylation-dependent caspase-mediated degradation of nuclear survival factors exemplified by MEF2 may represent a general process applicable to the regulation of other survival factors under diverse neurotoxic conditions.
منابع مشابه
Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2.
The mechanisms underlying dopamine neuron loss in Parkinson's disease (PD) are not clearly defined. Here, we delineate a pathway by which dopaminergic loss induced by 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) is controlled in vivo. We reported previously that calpains play a central required role in dopamine loss after MPTP treatment. Here, we provide evidence that the downstream effe...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملCdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion.
Isoform A of phosphatidylinositol 3-kinase enhancer (PIKE-A) is a newly identified prooncogenic factor that has been implicated in cancer cell growth. How PIKE-A activity is regulated in response to growth signal is poorly understood. Here, we demonstrate that cyclin dependent kinase 5 (Cdk5), a protein known to function mainly in postmitotic neurons, directly phosphorylates PIKE-A at Ser-279 i...
متن کاملSignal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases.
Myocyte enhancer factor-2 (MEF2) transcription factors control muscle-specific and growth factor-inducible genes. We show that hypertrophic growth of cardiomyocytes in response to phenylephrine and serum is accompanied by activation of MEF2 through a posttranslational mechanism mediated by calcium, calmodulin-dependent protein kinase (CaMK), and mitogen-activated protein kinase (MAPK) signaling...
متن کاملActivation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5.
Skeletal muscle differentiation is controlled by interactions between myocyte enhancer factor-2 (MEF2) and myogenic basic helix-loop-helix transcription factors. Association of MEF2 with histone deacetylases (HDAC) -4 and -5 results in repression of MEF2 target genes and inhibition of myogenesis. Calcium/calmodulin-dependent protein kinase (CaMK) signaling promotes myogenesis by disrupting MEF2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 19 شماره
صفحات -
تاریخ انتشار 2005